
LEARNING OBJECTIVES
After studying this chapter, you
should:

• Be familiar with the controls and
 audit tests relevant to the systems
development process.

• Understand the risks and controls
associated with program change pro-
cedures and the role of the source
program library.

• Understand the auditing techniques
(CAATTs) used to verify the effective
functioning of application controls.

• Understand the auditing techniques
used to perform substantive tests in
an IT environment.

T
his chapter concludes our treatment of IT controls as
outlined in the COSO control framework. The focus of the
chapter is on Sarbanes-Oxley (SOX) compliance regard-
ing systems development, program changes, and appli-

cation controls. This chapter examines the risks, controls, audit
objectives, and tests of controls that may be performed to satisfy
compliance or attest responsibilities. The chapter concludes with
a discussion of embedded audit modules and generalized audit
software used for substantive testing.

IT Controls Part III: Systems
Development, Program Changes,
and Application Controls

Chapter 17

798 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

Systems Development Controls
Chapters 13 and 14 presented the systems development life cycle (SDLC) as a multiphase
process by which organizations satisfy their formal information needs. An important
point at this juncture is that specific SDLC steps will vary from firm to firm. In reviewing
the effectiveness of a particular systems development methodology, the accountant should
focus on the controllable activities common to all systems development approaches. These
are outlined in the following section.

Controlling Systems Development Activities
This section and the one that follows examine several controllable activities that distin-
guish an effective systems development process. The six activities discussed deal with the
authorization, development, and implementation of new systems. Controls over systems
maintenance are presented in the next section.

Systems Authorization Activities
All systems should be properly authorized to ensure their economic justification and fea-
sibility. This requires a formal environment in which users submit requests to systems
professionals in written form.

User Specification Activities
Users need to be actively involved in the systems development process. The technical
complexity of the system should not stifle user involvement. Regardless of the technology
involved, the user should create a detailed written description of his or her needs. The
creation of a user specification document often involves the joint efforts of the user and
systems professionals. However, this document must remain a statement of user needs. It
should describe the user’s view of the problem, not that of the systems professionals.

Technical Design Activities
The technical design activities translate user specifications into a set of detailed techni-
cal specifications for a system that meets the user’s needs. The scope of these activities
includes systems analysis, feasibility analysis, and detailed systems design. The adequacy
of these activities is measured by the quality of the documentation that emerges from
each phase. Documentation is both a control and evidence of control and is critical to the
system’s long-term success. We discussed specific documentation requirements including
designer, operator, user, and auditor documentation in Chapter 14.

Internal Audit Participation
To meet the governance-related expectations of management under SOX, an organi-
zation’s internal audit department needs to be independent, objective, and technically
qualified. As such, the internal auditor can play an important role in the control of sys-
tems development activities. The internal auditor can serve as a liaison between users and
the systems professionals to ensure an effective transfer of knowledge. An internal audit
group, astute in computer technology and possessing a solid grasp of the business prob-
lems to be solved, is invaluable to the organization during all phases of the SDLC. Inter-
nal auditors should therefore become formally involved at the inception of the systems
development process to oversee the definition of user needs requirements and appropriate
controls. Furthermore, this involvement should continue throughout all phases of devel-
opment and maintenance activities.

FIGURE 17-1 Program Testing Procedures

Acct
Num Name Sale Amount

432 John Smith 100

Acct
Num Name Balance

432 John Smith 1000

Predetermined
Results:
New Balance
= 1100 Compare

Actual Test
Results

Test Accounts
Receivable Master File

Test Sales Order
Transactions File

AR Update
Application

Part V Computer Controls and Auditing 799

Program Testing
All program modules must be thoroughly tested before they are implemented. Figure 17-1
shows a program testing procedure involving the creation of hypothetical master files and
transactions files that the tested modules process. The results of the tests are then com-
pared against predetermined results to identify programming and logic errors. For exam-
ple, a programmer testing the logic of the accounts receivable update module illustrated
in Figure 17-1 might create an accounts receivable master file record for John Smith with
a current balance of $1,000 and a sales order transaction record for $100. Before per-
forming the update test, the programmer concludes that a new balance of $1,100 should
result. To verify the module’s internal logic, the programmer compares the actual results
obtained from the test with the predetermined results. This is a very simple example of a
program test. Actual testing would be extensive and involve many transactions that test
all aspects of the module’s logic.

The task of creating meaningful test data is time consuming. This should not, how-
ever, be considered a single-use activity. As we shall later see, some aspects of application
control testing require test data. To efficiently meet future audit objectives, test data
prepared during systems implementation should be preserved. This will give the auditor
a frame of reference for designing and evaluating future audit tests. For example, if a
program has undergone no maintenance changes since its implementation, the test results
from the audit should be identical to the original test results. Having a basis for comparison,
the auditor can thus quickly verify the integrity of the program code. On the other hand,

800 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

if changes have occurred, the original test data can provide a baseline for assessing the
impact of changes. The auditor can thus concentrate tests of application controls on areas
where computer logic was changed.

User Test and Acceptance Procedures
Prior to system implementation, the individual modules of the system need to be for-
mally and rigorously tested as a whole. The test team should comprise of user personnel,
systems professionals, and internal auditors. The details of the tests performed and their
results need to be formally documented and analyzed. Once the test team is satisfied that
the system meets its stated requirements, the system can be transferred to the user.

Many consider the formal testing and acceptance event to be the most important control
over the systems development process. This is the last point at which the user can determine
the system’s acceptability prior to it going into service. Whereas discovering a major flaw at
this juncture is costly, discovering it during day-to-day operations may be devastating.

Audit Objectives Relating to Systems Development
The auditor’s objectives are to ensure that (1) systems development activities are applied
consistently and in accordance with management’s policies to all systems development
projects; (2) the system as originally implemented was free from material errors and fraud;
(3) the system was judged necessary and justified at various checkpoints throughout the
SDLC; and (4) system documentation is sufficiently accurate and complete to facilitate
audit and maintenance activities.

Tests of Systems Development Controls
The auditor should select a sample of completed projects (completed in both the current
period and previous periods) and review the documentation for evidence of compliance
with stated systems development policies. Specific points for review should include deter-
mining that:

User and computer services management properly authorized the project.

A preliminary feasibility study showed that the project had merit.

A detailed analysis of user needs was conducted that resulted in alternative conceptual
designs.

A cost-benefit analysis was conducted using reasonably accurate figures.

The detailed design was an appropriate and accurate solution to the user’s problem.

Test results show that the system was thoroughly tested at both the individual module
and the total system level before implementation. (To confirm these test results, the
auditor may decide to retest selected elements of the application.)

There is a checklist of specific problems detected during the conversion period, along
with evidence that they were corrected in the maintenance phase.

Systems documentation complies with organizational requirements and standards.

Controlling Program Change Activities
Upon implementation, the information system enters the maintenance phase of the SDLC.
This is the longest period in the SDLC, often spanning several years. Most systems do not
remain static throughout this period. Rather, they undergo substantial changes that often
constitute, in dollars, an amount many times their original implementation cost.

•

•

•

•

•

•

•

•

Part V Computer Controls and Auditing 801

Little is served by designing and implementing controls over systems development
activities if control is not continued into the maintenance phase. Maintenance access
to systems increases the risk that logic will be corrupted either by accident or intent to
defraud. To minimize the risk, all maintenance actions should require, as a minimum,
four controls: formal authorizations, technical specifications, testing, and documenta-
tion updates. In other words, maintenance activities should be given essentially the same
treatment as new development. The extent of the change and its potential impact on the
system should govern the degree of control applied. When maintenance causes extensive
changes to program logic, additional controls, such as involvement by the internal audi-
tor and additional user test, and acceptance procedures may be necessary.

Source Program Library Controls
Even with formal maintenance procedures in place, individuals who gain unauthorized
access to programs threaten application integrity. The remainder of this section deals
with control techniques and procedures for reducing this risk.

In larger computer systems, application program modules are stored in source code
form on magnetic disks called the source program library (SPL). Figure 17-2 illustrates
the relationship between the SPL and other key components of the operating environ-
ment. This material presumes an understanding of the program compilation process. If
you are uncertain about the meaning of the terms source program, compiler, and load
module, review the section on language translators on the book’s web page located at
http://academic.cengage.com.

FIGURE 17-2 Uncontrolled Access to the Source Program Library

Production
Application

Source
Program

Systems
Development
Programmers

Compiler
Program

Object
Module

Link Edit
Program Program

Load
Module

Source
Program
Library

Production
Load Library

Systems
Maintenance
Programmers

http://academic.cengage.com

802 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

Executing a production application requires that the source code be compiled and
linked to a load module that the computer can process. As a practical matter, programs in
their compiled state are secure and free from the threat of unauthorized modification. At
this point, the source code is not needed for the application to run. In fact, we could destroy
it if no future changes were ever to be made to the application. To make such a change,
however, requires changing the logic of the source code on the SPL. This is then recompiled
and linked to create a new load module that incorporates the changed code. Clearly, pro-
tecting the source code on the SPL is central to protecting the production application.

The Worst-Case Situation: No Controls
Figure 17-2 shows the SPL without controls. In this situation, access to application pro-
grams is completely unrestricted. Legitimate maintenance programmers or others may
access any programs stored in the library, which has no provision for detecting an unau-
thorized intrusion. Because these programs are open to unauthorized changes, no basis
exists for relying on the effectiveness of controls designed into them. Even testing these
controls proves only that they work now, but says nothing about how they worked last
week or last month. In other words, with no control over access to the SPL, a program’s
integrity during the period in question cannot be established.

A Controlled SPL Environment
Controlling the SPL requires SPL management system (SPLMS) software. Figure 17-3
illustrates this approach. The black box surrounding the SPL signifies the SPLMS, which
controls four critical functions: (1) storing programs on the SPL, (2) retrieving programs
for maintenance purposes, (3) deleting obsolete programs from the library, and (4) docu-
menting program changes to provide an audit trail of the changes.

You may have recognized the similarities between the SPLMS and a database man-
agement system (DBMS). This is a valid analogy, the difference being that SPL software
manages program files and DBMSs manage data files. The computer manufacturer may
supply SPLMS software as part of the operating system, or the software may be pur-
chased through vendors.

The mere presence of an SPLMS does not guarantee program integrity. Again, we
can draw an analogy with the DBMS. To achieve data integrity, the DBMS must be prop-
erly used; control does not come automatically—it must be planned. Likewise, an SPL
requires specific planning and control techniques to ensure program integrity. The con-
trol techniques discussed in the following section address the most vulnerable areas and
should be considered minimum SPL controls.

Password Control
Password control over the SPL is similar to password controls in a DBMS. Every finan-
cially significant program stored in the SPL can be assigned a separate password. As pre-
viously discussed, passwords have drawbacks. When more than one person is authorized
to access a program, preserving the secrecy of a shared password is a problem. Because
responsibility for the secrecy of a shared password lies with the group rather than with an
individual, personal accountability is reduced.

Separation of Test Libraries
Figure 17-3 illustrates an improvement on the shared password approach through the
creation of separate password-controlled libraries (or directories) for each programmer.

Part V Computer Controls and Auditing 803

Under this concept, a strict separation is maintained between the production programs
that are subject to maintenance in the SPL and those being developed. Production pro-
grams are copied into the programmer’s library for maintenance and testing purposes
only. Direct access to the production SPL is limited to a specific librarian group that must
approve all requests to modify, delete, and copy programs.

An enhancement to this control feature is the implementation of program naming con-
ventions. The name assigned to a program clearly distinguishes it as being either a test or a
production program. When a program is copied from the production SPL to the program-
mer’s library, it is given a temporary test name. When the program is returned to the SPL,
it is renamed with its original production name. This technique greatly reduces the risk of
accidentally running an untested version of a program in place of the production program.

Audit Trail and Management Reports
An important feature of SPL management software is the creation of reports that enhance
 management control and support the audit function. The most useful of these are program
modification reports, which describe in detail all program changes (additions and deletions) to

FIGURE 17-3 Source Program Library under the Control of SPL Management Software

Systems Development
Test Library

Application
Program

00

Application
Program

05

Systems Maintenance
Test Library

SPL

Application
Program

05

Documen-
tation
File

Maintenance
Request

Compile and
Link Edit

05

Load Library

Production

Application
Load
Module

SPL Management System

Systems
Development
Programmers

Systems
Maintenance
Programmers

Program
Listing

Program
Change
Report

05

05

05

804 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

each module. These reports should be part of the documentation file of each application to form
an audit trail of program changes over the life of the application. During an audit, the reports
can be reconciled against program maintenance requests to verify that only approved changes
were implemented. For example, if a programmer attempted to use a legitimate maintenance
event as an opportunity to commit program fraud, the unauthorized code changes would be
documented in the program modification report. These reports can be produced as hard copy
or digital and can be governed by password control, thus limiting access to management and
auditors.

Program Version Numbers
The SPLMS assigns a version number automatically to each program stored on the SPL.
When programs are first placed in the libraries (at implementation), they are assigned ver-
sion number zero. With each modification to the program, the version number is increased
by one. For instance, after five authorized maintenance changes, the production program
will be Version 05, as illustrated in Figure 17-3. This feature, when combined with audit
trail reports, provides a basis for detecting unauthorized changes to the application pro-
gram. An unauthorized change is signaled by a version number on the production load
module that cannot be reconciled to the number of authorized changes. For example, if
10 changes were authorized but the production program is Version 12, then two possible
control violations may have happened: (1) authorized changes occurred, which for some
reason went undocumented, or (2) unauthorized changes were made, which incremented
the version numbers. We will discuss this issue in more detail later.

Controlling Access to Maintenance Commands
Powerful maintenance commands are available for most library systems that can be used
to alter or eliminate program passwords, alter the program version number, and tempo-
rarily modify a program without generating a record of the modification.

There are a number of legitimate technical reasons why systems designers must some-
times use these commands. If not controlled, however, maintenance commands open the
possibility of unauthorized, and perhaps undocumented, program modifications. Hence,
access to the maintenance commands themselves should be password controlled, and
management or an IT security group should control the authority to use them.

Audit Objectives Relating to Systems Maintenance
The auditor’s objectives are to determine that (1) maintenance procedures protect appli-
cations from unauthorized changes, (2) applications are free from material errors, and
(3) program libraries are protected from unauthorized access.

The tests of controls necessary to achieve each of these objectives are examined in the
following section. The discussion assumes that the organization employs SPL software to
control program maintenance. Without such software, achieving the audit objectives may
be impossible. The procedures described below are illustrated in Figure 17-4.

Audit Procedures for Identifying Unauthorized Program Changes
To establish that program changes were authorized, the auditor should examine the audit
trail of program changes for a sample of applications that have undergone maintenance.
The auditor can confirm that authorization procedures were followed by performing the
following tests of controls.

Reconcile Program Version Numbers. The permanent file of the application should con-
tain program change authorization documents that correspond to the current version

Part V Computer Controls and Auditing 805

number of the production application. In other words, if the production application is in
its tenth version, there should be 10 program change authorizations in the permanent file
as supporting documentation.1 Any discrepancies between version numbers and support-
ing documents may indicate that unauthorized changes were made.

Confirm Maintenance Authorization. The program maintenance authorization should
indicate the nature of the change requested and the date of the change. The appropriate
management from both computer services and the user departments should also sign and
approve it. The auditor should confirm the facts contained in the maintenance authoriza-
tion and verify the authorizing signatures with the managers involved.

Audit Procedures for Identifying Application Errors
The auditor can perform three types of tests of controls—reconcile the source code, review the
test results, and retest the program—to determine that programs are free from material errors.

Reconcile the Source Code. Each application’s permanent file should contain the cur-
rent program listing and listings of all changes made to the application. These docu-
ments describe in detail the application’s maintenance history. In addition, the nature
of the program change should be clearly stated on the program change authorization

FIGURE 17-4 Auditing SPL Software System

Documen-
tation
File

Application
Program

Source Program
Library (SPL)

Systems
Development
Programmers

Systems
Maintenance
Programmers

User
Management

Auditor confirms maintenance
requests with user management
to verify maintenance authorization
and context.

Auditor reconciles program
maintenance requests, program
listings, and program changes to verify
the need for and accuracy of program
maintenance.

Auditor compares the current
program version number in the
documentation file with the current
version number of the production
program. Discrepancies indicate
undocumented program changes.

Maintenance
Request

05 Program
Listing

05 Program
Change
Report
05

Systems Maintenance
Test Library

Application
Program

05

Systems Development
Test Library

Application
Program

00 Compile and
Link Edit the
Application
Program

Authorizes
and
Requests
Program
Changes

Authorizes and
Requests New
Applications

Application
Load
Module

Load Library

SPL Management System

05

05

1 In most systems, a program in its original (unmodified) state has a version number of 00. Thus, ten changes
will give a version number of 10.

806 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

document. The auditor should select a sample of applications and reconcile each program
change with the appropriate authorization documents. The modular approach to systems
design (creating applications that comprise many small discrete program modules) greatly
facilitates this testing technique. The reduced complexity of these modules enhances the
auditor’s ability to identify irregularities that indicate errors, omissions, and potentially
fraudulent programming codes.

Review the Test Results. Every program change should be thoroughly tested before being
implemented. Program test procedures should be properly documented as to the test objectives,
test data, and processing results. The auditor should review this record for each significant
program change to establish that testing was sufficiently rigorous to identify any errors.

Retest the Program. The auditor can retest the application to confirm its integrity. We
examine several techniques for application testing later in the chapter.

Audit Procedures for Testing Access to Libraries
The existence of a secure program library is central to preventing errors and program
fraud. One control method is to assign library access privileges only to system librar-
ians. Their function is to retrieve applications from the program libraries for maintenance
and to restore the modified programs to the library. Thus maintenance programmers test
applications in their private libraries but do not have access to the program library. The
auditor may perform the following tests of controls to assess program library security.

Review Programmer Authority Tables. The auditor can select a sample of program-
mers and review their access authority. The programmer’s authority table will specify the
libraries a programmer may access. These authorizations should be matched against the
programmer’s maintenance authority to ensure that no irregularities exist.

Test Authority Table. The auditor may violate the authorization rules in an attempt to
access unauthorized libraries to test the programmer’s access privileges. The operating
system should deny any such attempt.

Application Controls
In addition to IT general controls, SOX requires management and auditors to consider
application controls relevant to financial reporting. Application controls are associated with
specific applications, such as payroll, purchases, and cash disbursements systems. These fall
into three broad categories: input controls, processing controls, and output controls.

Input Controls
Input controls are programmed procedures (routines) that perform tests on transaction
data to ensure that they are free from errors. Input control routines should be designed
into the system at different points, depending on whether transaction processing is real
time or batch. Input controls in real-time systems are placed at the data collection stage
to monitor data as they are entered from terminals. Batch systems often collect data in
transaction files, where they are temporarily held for subsequent processing. In this case,
input control tests are performed as a separate procedure (or run) prior to the master
file update process. In any case, transaction data should never be used to update master
files until the transactions have been tested for validity, accuracy, and completeness. If a

record fails an input control test, it is flagged as an error record. Later, we will see how to
deal with these records. The following are examples of input controls.

Check Digit. Data codes are used extensively in transaction processing systems for repre-
senting such things as customer accounts, items of inventory, and general ledger accounts
in the chart of accounts. If the data code of a particular transaction is entered incorrectly
and goes undetected, then a transaction processing error will occur, such as posting to the
wrong account. Two common classes of data input errors cause such processing prob-
lems: transcription errors and transposition errors.

Transcription errors are divided into three categories:

1. Addition errors occur when an extra digit or character is added to the code. For
example, inventory item number 83276 is recorded as 832766.

2. Truncation errors occur when a digit or character is removed from the end of a code.
In this type of error, the inventory item above would be recorded as 8327.

3. Substitution errors are the replacement of one digit in a code with another. For exam-
ple, code number 83276 is recorded as 83266.

Transposition errors are of two types.

1. Single transposition errors occur when two adjacent digits are reversed. For instance,
83276 is recorded as 38276.

2. Multiple transposition errors occur when nonadjacent digits are transposed. For
example, 83276 is recorded as 87236.

These problems may be controlled using a check digit. This is a control digit (or digits)
added to the data code when it is originally assigned that allows the integrity of the code
to be established during subsequent processing. The check digit can be located anywhere
in the code, as a prefix, a suffix, or embedded someplace in the middle. The simplest form
of check digit is to sum the digits in the code and use this sum as the check digit. For
example, for the customer account code 5372, the calculated check digit would be

5 � 3 � 7 � 2 � 17

By dropping the tens column, the check digit 7 is added to the original code to produce
the new code 53727. The entire string of digits (including the check digit) becomes the
customer account number. During data entry, the system can recalculate the check digit
to ensure that the code is correct. This technique will detect only transcription errors.
For example, if a substitution error occurred and the above code were entered as 52727,
the calculated check digit would be 6 (5 � 2 � 7 � 2 � 16 � 6), and the error would
be detected. However, this technique would fail to identify transposition errors. For
 example, transposing the first two digits yields the code 35727, which still sums to 17
and produces the check digit 7. This error would go undetected.

A popular check digit technique for dealing with transposition errors is modulus 11.
Using the code 5372, the steps in this technique are outlined next.

1. Assign weights. Each digit in the code is multiplied by a different weight. In this case,
the weights used are 5, 4, 3, and 2, shown as follows:

 Digit Weight
 5 – 5 � 25
 3 – 4 � 12
 7 – 3 � 21
 2 – 2 � 4

Part V Computer Controls and Auditing 807

808 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

2. Sum the products: (25 � 12 � 21 � 4 � 62).

3. Divide by the modulus. We are using modulus 11 in this case, giving 62/11 � 5 with
a remainder of 7.

4. Subtract the remainder from the modulus to obtain the check digit: (11 � 7 � 4
[check digit]).

5. Add the check digit to the original code to yield the new code: 53724.

Using this technique to recalculate the check digit during processing, a transposition error
in the code will produce a check digit other than 4. For example, if the code above was
incorrectly entered as 35724, the recalculated check digit would be 6.

Missing Data Check. Some programming languages are restrictive as to the justification
(right or left) of data within the field. If data are not properly justified or if a character
is missing (has been replaced with a blank), the value in the field will be improperly pro-
cessed. In some cases, the presence of blanks in a numeric data field may cause a system
failure. When the control routine detects a blank where it expects to see a data value, the
error is flagged.

Numeric–Alphabetic Check. This control identifies when data in a particular field are in
the wrong form. For example, a customer’s account balance should not contain alpha-
betic data, and the presence of it will cause a data processing error. Therefore, if alpha-
betic data are detected, the error record flag is set.

Limit Check. Limit checks are used to identify field values that exceed an authorized
limit. For example, assume the firm’s policy is that no employee works more than
44 hours per week. The payroll system input control program can test the hours-worked
field in the weekly payroll records for values greater than 44.

Range Check. Many times, data have upper and lower limits to their acceptable values.
For example, if the range of pay rates for hourly employees in a firm is between $8 and
$20, this control can examine the pay rate field of all payroll records to ensure that they
fall within this range. The purpose of this control is to detect keystroke errors that shift
the decimal point one or more places. It would not detect an error where a correct pay
rate of, say, $9 is incorrectly entered as $15.

Reasonableness Check. The error above may be detected by a test that determines if a
value in one field, which has already passed a limit check and a range check, is reasonable
when considered along with data in other fields of the record. For example, an employ-
ee’s pay rate of $18 per hour falls within an acceptable range. This rate is excessive, how-
ever, when compared to the employee’s job skill code of 693; employees in this skill class
should not earn more than $12 per hour.

Validity Check. A validity check compares actual field values against known acceptable
values. This control is used to verify such things as transaction codes, state abbreviations,
or employee job skill codes. If the value in the field does not match one of the acceptable
values, the record is flagged as an error.

This is a frequently used control in cash disbursement systems. One form of cash
disbursement fraud involves manipulating the system into making a fraudulent payment
to a nonexistent vendor. To prevent this, the firm may establish a list of valid vendors
with whom it does business exclusively. Thus, before payment of any trade obligation,

Part V Computer Controls and Auditing 809

the validation program matches the vendor number on the cash disbursement voucher
against the valid vendor list. If the code does not match, payment is denied, and manage-
ment reviews the transaction.

Processing Controls
After passing through the data input stage, transactions enter the processing stage of the
system. Processing controls are programmed procedures and may be divided into three
categories: batch controls, run-to-run controls, and audit trail controls.

Batch controls are used to manage the flow of high volumes of transactions through
batch processing systems. The objective of batch control is to reconcile system output
with the input originally entered into the system. This provides assurance that:

All records in the batch are processed.

No records are processed more than once.

An audit trail of transactions is created from input through processing to the output
stage of the system.

Batch control begins at the data input stage and continues through all data process-
ing phases of the system. Batch control involves grouping together into batches simi-
lar types of transactions (such as sales orders) and controlling them as a unit of work
throughout data processing. To achieve this, a batch control record is created when the
batch of transactions is entered into the system. This may be a user department action or
a separate data control step. The control record contains relevant information about the
batch, such as:

A unique batch number.

A batch date.

A transaction code (indicating the type of transactions, such as a sales order or cash
receipt).

The number of records in the batch (record count).

The total dollar value of a financial field (batch control total).

The total of a unique nonfinancial field (hash total).

Figure 17-5 depicts a batch control record in relation to the batch of transactions it
describes. The data in the control record are used to assess the integrity of the batch during all
subsequent processing. For example, the batch control record in the figure shows a batch of
50 sales order records with a total dollar value of $122,674.87 and a hash total of 4537838.

•

•

•

•

•

•

•

•

•

FIGURE 17-5 Batch Control Record

Batch Control Record Batch of Sales Order Transactions

12403 019

Batch
Number

Transaction
Code

01152006

Date

50

Record
Count

4537838

Hash
Total

12267487

Control
Total

Record 1 * * * * * * Record 50

810 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

Run-to-run control is the use of batch figures to monitor the batch as it moves from
one programmed procedure (run) to another. Thus at various points throughout process-
ing and at the end of processing, the batch totals are recalculated and compared to the
batch control record. This ensures that each run in the system processes the batch cor-
rectly and completely.

Figure 17-6 illustrates the use of run-to-run control in a sales order system. This
application comprises four runs: (1) data input, (2) accounts receivable update, (3) inven-
tory update, and (4) output. At the end of the accounts receivable run, batch control
figures are recalculated and reconciled with the control totals passed from the data input
run. These figures are then passed to the inventory update run, where they are again
recalculated, reconciled, and passed to the output run. Errors detected in each run are
flagged and placed in an error file. The run batch control figures are then adjusted to
reflect the deletion of these records.

Notice from Figure 17-6 that error records may be placed on the error file at several
different points in the process. In a separate procedure (not shown), an authorized user

FIGURE 17-6 Run-to-Run Controls

Transactions +
Control Totals

Errors

ErrorsInventory
Master

AR Master

Input
Sales
Orders

Transactions +
Control Totals

AR Update

Transactions +
Control Totals

Inventory
Update

Transactions +
Control Totals

Output
Reporting

Sales
Summary
Report

Errors

Run 1

Run 2

Run 3

Run 4

Part V Computer Controls and Auditing 811

representative will make corrections to the error records and resubmit them as a spe-
cial batch for reprocessing. Errors detected during processing require careful handling,
because these records may already be partially processed. Simply resubmitting the cor-
rected records to the system at the data input stage may result in processing portions of
these transactions twice. Two methods are used to deal with this complexity. The first is
to reverse the effects of the partially processed transactions and resubmit the corrected
records to the data input stage. The second method is to reinsert corrected records into
the processing stage at which the error was detected.

The term hash total, which was used in the preceding discussion, is the summation of
a nonfinancial field to keep track of the records in a batch. Any numeric field, such as a
customer’s account number, a purchase order number, or an inventory item number, may
be used to calculate a hash total. In the following example, the sales order number (SO#)
field for an entire batch of sales order records is summed to produce a hash total.

 SO#
 14327
 67345
 19983
 •
 •
 •
 •
 88943
 96543

 4537838 (hash total)

Let’s see how we can use this seemingly meaningless number. Assume that after this
batch of records is created, someone replaced one of the sales orders in the batch with
a fictitious record of the same dollar amount. How would the batch control procedures
detect this irregularity? Both the record count and the dollar amount control totals would
still balance. The hash total that the batch control procedures calculated would, however,
not balance. The irregularity would thus be detected.

Audit trail controls in an IT environment ensure that every transaction can be traced
through each stage of processing from its economic source to its presentation in financial
statements. The following are examples of audit trail control.

Transaction Logs. Every transaction the system successfully processes should be recorded
on a transaction log, which serves as a journal. Figure 17-7 shows this process. Two reasons
underscore the importance of this log. First, the transaction log is a permanent record of
transactions, though the input transaction file is typically a temporary file. Once processed,
the records on the input file are erased to make room for the next batch of transactions.
Second, not all of the records in the input file may be successfully processed. Some of them
will fail tests during subsequent processing and will be passed to an error file. A transac-
tion log contains only successful transactions—those that have changed account balances.
The transaction log and error files combined should account for all the transactions in the
batch. The validated transaction file may then be scratched with no loss of data.

Log of Automatic Transactions. The system triggers some transactions internally.
For example, when inventory drops below the reorder point, the system automatically

812 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

 generates a purchase order. To maintain an audit trail of these activities, all internally
generated transactions must be placed in a transaction log.

Transaction Listings. The system should produce a (hard-copy) transaction listing of
all successful transactions. These listings should go to the appropriate users to facilitate
reconciliation with input. In addition, the responsible end user should receive a detailed
listing of all internally generated transactions.

Output Controls
Output controls are a combination of programmed routines and other procedures to
ensure that system output is not lost, misdirected, or corrupted and that privacy is not
violated. Exposures of this sort can cause serious disruptions to operations and may
result in financial losses to a firm. For example, if the checks a firm’s cash disbursements
system produces are lost, misdirected, or destroyed, trade accounts and other bills may go
unpaid. This could damage the firm’s credit rating and result in lost discounts, interest,
or penalty charges. If the privacy of certain types of output is violated, a firm could have
its business objectives compromised or could become exposed to litigation. Examples
of privacy exposures include the disclosure of trade secrets, patents pending, marketing
research results, and patient medical records. This section examines output exposures
and controls for both hard copy and digital output.

Controlling Hard Copy Output
Batch systems usually produce hard copy, which typically requires the involvement of
intermediaries in its production and distribution. Figure 17-8 shows the stages in this
output process and serves as the basis for this section.

Output Spooling. In large-scale data processing operations, output devices such as line
printers can become backlogged with many programs simultaneously demanding limited
resources. This can cause a bottleneck and adversely affect system throughput. To ease
this burden, applications are often designed to direct their output to a magnetic disk file

FIGURE 17-7 Transaction Log to Preserve the Audit Trail

Output
Reports

Transactions
Validation
Program Valid

Transactions

Application
Process

Transaction Log
(Journal) Error File

Input Phase Processing Phase Output Phase

Valid transactions equal successful
transactions plus error transactions.

Scratch file is erased
after processing.

Part V Computer Controls and Auditing 813

rather than print it directly. This is called spooling. Later, when printer resources become
available, the output files are printed.

The creation of an output file as an intermediate step in the printing process presents
an added exposure. A computer criminal may use this opportunity to:

1. Access the output file and change critical data values (such as dollar amounts on
checks). The printer program will then print the fallacious output as if the system
produced it.

2. Access the file and change the number of copies of output to be printed. The extra
copies may then be removed without notice during the printing stage.

3. Make a copy of the output file to produce illegal output reports.

4. Destroy the output file before output printing takes place.

The management and auditors need to be aware of these potential exposures and ensure
that proper access and backup procedures are in place to protect output files. We dis-
cussed file access and backup controls in Chapter 15.

Print Programs. When a printer becomes available, the print run program produces
hard-copy output from the output file. Print programs are often complex systems that
require operator intervention. Four common types of operator actions are:

1. Pausing the print program to load the correct type of output documents (check stocks,
invoices, or other special forms).

2. Entering parameters that the print run needs, such as the number of copies to be
printed.

FIGURE 17-8 Stages in the Output Process

Print Run

Output File

Output Run
(spooling)

Output Report

Waste

Output Report

Report
Distribution

Output Report

End User Output Report

File

Aborted
Output

814 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

3. Restarting the print run at a prescribed checkpoint after a printer malfunction.

4. Removing printed output from the printer for review and distribution.

Print program controls should be designed to deal with two types of exposures present
in this environment: (1) the production of unauthorized copies of output and (2) employee
browsing of sensitive data. Some print programs allow the operator to specify more cop-
ies of output than the output file calls for, which allows for the possibility of producing
unauthorized copies of output. One way to control this is to employ output document
controls. This is feasible only when dealing with prenumbered invoices for billing custom-
ers or prenumbered check stock. At the end of the run, the number of copies the output
file specifies should be reconciled with the actual number of output documents used.

To prevent operators and others from viewing sensitive output, special multipart
paper can be used, with a grayed-out top copy to prevent the print from being read. This
type of product is often used for payroll check printing. An alternative privacy control is
to direct the output to a special remote printer that can be closely supervised.

Waste. Computer output waste is a potential source of exposure. Aborted reports and
the carbon copies from multipart paper need to be disposed of properly. Computer crimi-
nals disguised as janitorial staff have been known to sift through trash cans searching for
carelessly discarded output that is presumed to be of no value. From such trash, computer
criminals may obtain information about a firm’s market research, credit ratings of its cus-
tomers, or even trade secrets, which they can sell to a competitor. Computer waste is also
a source of passwords that a perpetrator may use to access the firm’s computer system.
To control against this threat, all sensitive computer output should be passed through a
paper shredder.

Report Distribution. The primary risks associated with the distribution of sensitive
reports include their being lost, stolen, or misdirected in transit to the user. The following
control techniques can be used:

1. The reports may be placed in a secure mailbox to which only the user has the key.

2. The user may be required to appear in person at the distribution center and sign for
the report.

3. A security officer or special courier may deliver the report to the user.

End-User Controls. Once in the hands of the user, output reports should be examined for
correctness. Errors the user detects should be reported to the appropriate computer ser-
vices management. Such errors may be symptoms of an improper systems design, incor-
rect procedures, errors accidentally inserted during systems maintenance, or unauthorized
access to data files or programs. Once a report has served its purpose, it should be stored
in a secure location until its retention period has expired and then shredded.

Controlling Digital Output
Digital output can be directed to the user’s computer screen or printer. The primary
output threat is the interception, disruption, destruction, or corruption of the output
message as it passes across the communications network. This threat comes from two
types of exposures: (1) exposures from equipment failure and (2) exposures from sub-
versive acts. We discussed techniques for controlling communications exposures in
Chapter 16.

Part V Computer Controls and Auditing 815

Testing Computer Application Controls
The appendix to Chapter 15 described how audit objectives are derived from manage-
ment assertions such as existence or occurrence, completeness, accuracy, rights and
obligations, valuation or allocation, and presentation and disclosure. Depending on
the type of account being considered, a particular management assertion has different
implications for the audit objective to be developed. Once developed, achieving the
audit objectives requires designing audit procedures to gather evidence that either cor-
roborates or refutes the underlying management assertions. Generally, this involves a
combination of tests of application controls and substantive tests of transaction details
and account balances.

This section deals essentially with the tests of application controls, but at the end we
will briefly review techniques for performing substantive tests. Tests of computer appli-
cation controls follow two general approaches: (1) the black box (around the computer)
approach and (2) the white box (through the computer) approach. First, the black box
approach is examined. Then, several white box testing techniques are reviewed.

Black Box Approach
Auditors performing black box testing do not rely on a detailed knowledge of the appli-
cation’s internal logic. Instead, they analyze flowcharts and interview knowledgeable
personnel in the client’s organization to understand the functional characteristics of the
application. With an understanding of what the application is supposed to do, the auditor
tests the application by reconciling production input transactions processed by the applica-
tion with output results. The output results are analyzed to verify the application’s compli-
ance with its functional requirements. Figure 17-9 illustrates the black box approach.

The advantage of the black box approach is that the application need not be removed
from service and tested directly. This approach is feasible for testing applications that are
relatively simple. However, complex applications—those that receive input from many
sources, perform a variety of complex operations, or produce multiple outputs—often
require a more focused testing approach to provide the auditor with evidence of application
integrity.

FIGURE 17-9 Auditing around the Computer—The Black Box Approach

Master Files

Input

Output

Application
under
Review

Auditor reconciles input
transactions with output
produced by application.

816 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

White Box Approach
The white box (through the computer) approach relies on an in-depth understanding of
the internal logic of the application being tested. The white box approach includes several
techniques for testing application logic directly. Typically these involve the creation of a
small set of test transactions to verify specific aspects of an application’s logic and con-
trols. In this way, auditors are able to conduct precise tests, with known variables, and
obtain results that they can compare against objectively calculated results. The most com-
mon types of tests of controls include the following:

1. Authenticity tests, which verify that an individual, a programmed procedure, or a
message (such as an electronic data interchange (EDI) transmission) attempting to
access a system is authentic. Authenticity controls include user IDs, passwords, valid
vendor codes, and authority tables.

2. Accuracy tests, which ensure that the system processes only data values that conform
to specified tolerances. Examples include range tests, field tests, limit tests, and rea-
sonableness tests.

3. Completeness tests, which identify missing data within a single record and entire
records missing from a batch. The types of tests performed are field tests, record
sequence tests, hash totals, and control totals.

4. Redundancy tests, which determine that an application processes each record only
once. Redundancy controls include the reconciliation of batch totals, record counts,
hash totals, and financial control totals.

5. Access tests, which ensure that the application prevents authorized users from unau-
thorized access to data. Access controls include passwords, authority tables, user-
defined procedures, data encryption, and inference controls.

6. Audit trail tests, which ensure that the application creates an adequate audit trail.
This includes evidence that the application records all transactions in a transaction
log, posts data values to the appropriate accounts, produces complete transaction
listings, and generates error files and reports for all exceptions.

7. Rounding error tests, which verify the correctness of rounding procedures. Rounding
errors occur in accounting information when the level of precision used in the calcu-
lation is greater than that used in the reporting. For example, interest calculations on
bank account balances may have a precision of five decimal places, whereas only two
decimal places are needed to report balances. If the remaining three decimal places
are simply dropped, the total interest calculated for the total number of accounts may
not equal the sum of the individual calculations.

Figure 17-10 shows the logic for handling the rounding error problem. This tech-
nique uses an accumulator to keep track of the rounding differences between calculated
and reported balances. Note how the sign and the absolute value of the amount in the
accumulator determine how rounding affects the customer account. To illustrate, the
rounding logic is applied to three hypothetical bank balances (see Table 17-1 on page 818).
The interest calculations are based on an interest rate of 5.25 percent.

Failure to properly account for the rounding difference above can result in an imbal-
ance between the total (control) figure and the sum of the detail figures for each account.
Poor accounting for rounding differences can also present an opportunity for fraud.

Salami Fraud. Rounding programs are particularly susceptible to the so-called salami
fraud. This fraud tends to affect large numbers of victims, but each in a minimal way.

Part V Computer Controls and Auditing 817

The fraud scheme takes its name from the analogy of slicing a large salami (the fraud
objective) into many thin pieces. Each victim gets one of these small pieces and is
unaware of being defrauded. For example, a programmer, or someone with access to
the rounding program in Figure 17-10, can modify the rounding logic, thus perpetrat-
ing a salami fraud, as follows: at the point in the process where the algorithm should
increase the current customer’s account (that is, the accumulator value is > +.01), the
program instead adds one cent to another account—the perpetrator’s account. Although
the absolute amount of each fraud transaction is small, given the hundreds of thou-
sands of accounts that could be processed, the total amount of the fraud can become
significant over time.

Most large public accounting firms have developed special audit software that can
detect excessive file activity. In the case of the salami fraud, there would be thousands of
entries into the computer criminal’s personal account that the audit software may detect.
A clever programmer may funnel these entries through several intermediate accounts
in order to disguise this activity. The accounts are then posted to a smaller number of

FIGURE 17-10 Rounding Error Algorithm

Start

StopEnd of File

Read
Account
Balance

Accumulator
> +.01

Accumulator
< –.01

Write New
Rounded
Balance

Calculate Interest

Calculate
New Balance

Calculate
New Balance
Rounded to
Nearest Cent

Subtract
Rounded Balance
from
Unrounded Balance

Add Remainder
to Accumulator

Add .01 to
New Rounded Balance
and Subtract .01 from
Accumulator

Subtract .01 from
New Rounded Balance
and Add .01 to
Accumulator

Yes

No

Yes

No

Yes

No

818 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

 intermediate accounts and finally to the programmer’s personal account. By using many
levels of accounts in this way, the activity to any single account is reduced, and the audit
software may not detect it. There will be a trail, but it can be complicated. The auditor
can also use audit software to detect the existence of unauthorized (dummy) files that
contain the intermediate accounts used in such a fraud.

White Box Testing Techniques
To illustrate how application controls are tested, this section describes five computer-
assisted audit tools and techniques (CAATTs) approaches: the test data method, base case
system evaluation, tracing, integrated test facility, and parallel simulation.

TABLE 17-1 Sample Data

Record 1

Beginning accumulator balance .00861

Beginning account balance 2,741.78

Calculated interest 143.94345

New account balance 2,885.72345

Rounded account balance 2,885.72

Adjusted accumulator balance .01206 (.00345 + .00861)

Ending account balance 2,885.73 (round up 1 cent)

Ending accumulator balance .00206 (.01206 – .01)

Record 2

Beginning accumulator balance .00206

Beginning account balance 1,893.44

Calculated interest 99.4056

New account balance 1,992.8456

Rounded account balance 1,992.85

Adjusted accumulator balance –.00646 (.00206 – .0044)

Ending account balance 1,992.85 (no change)

Ending accumulator balance –.00646

Record 3

Beginning accumulator balance –.00646

Beginning account balance 7,423.34

Calculated interest 389.72535

New account balance 7,813.06535

Rounded account balance 7,813.07

Adjusted accumulator balance –.01111 (.00646 – .00465)

Ending account balance 7,813.06 (round down 1 cent)

Ending accumulator balance .00111

Part V Computer Controls and Auditing 819

Test Data Method
The test data method is used to establish application integrity by processing specially
prepared sets of input data through production applications that are under review. The
results of each test are compared to predetermined expectations to obtain an objective
assessment of application logic and control effectiveness. The test data technique is illus-
trated in Figure 17-11. To perform the test data technique, the auditor must obtain a
copy of the production version of the application. In addition, test transaction files and
test master files must be created. As illustrated in the figure, test transactions may enter
the system from magnetic tape, disk, or via an input terminal. Results from the test run
will be in the form of routine output reports, transaction listings, and error reports. In
addition, the auditor must review the updated master files to determine that account bal-
ances have been correctly updated. The test results are then compared with the auditor’s
expected results to determine if the application is functioning properly. This comparison
may be performed manually or through special computer software.

Figure 17-12 lists selected hypothetical transactions and accounts receivable records
that the auditor prepared to test a sales order processing application. The figure also
shows an error report of rejected transactions and a listing of the updated accounts receiv-
able master file. Any deviations between the actual results and those the auditor expects
may indicate a logic or control problem.

Creating Test Data. Creating test data requires a complete set of valid and invalid trans-
actions. Incomplete test data may fail to explore critical branches of application logic and
error checking routines. Test transactions should be designed to test all possible input
errors, logical processes, and irregularities.

Gaining knowledge of the application’s internal logic sufficient to create meaningful
test data may demand a large investment in time. The efficiency of this task can, however,
be improved through careful planning during systems development. The auditor should
save for future use the test data used to test program modules during the implementa-
tion phase of the SDLC. If the application has undergone no maintenance since its initial
implementation, current audit test results should equal the original test results obtained

Predetermined
Results Test

Master Files

Test Data

Test Results

Application
under
Review

Test Data
Test Data

Auditor prepares
test transactions,
test master files,
and expected results.

After test run,
auditor compares
test results with
predetermined results.

Test Transactions Input Sources

FIGURE 17-11 The Test Data Technique

820 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

FIGURE 17-12 Example of Test Data and Test Results

TOTAL
PRICE

20.00
45.00

400.00
10.00

120.00
3.00

1,220.00

UNIT
PRICE

20.00
15.00
20.00

2.00
25.00

3.00
1,220.00

QNTY

1
3

20
5
5
1
1

DESCRIPTION

Water Pump
Gear
Hose
Spacer
Bushing
Seal
Rebuilt Engine

CUSTOMER
NAME

Smith, Joe
Azar, Atul
Jones, Mary
Lang, Tony
Tuner, Agnes
Hanz, James
Swindle, Joe

CUST
NUM

231893
231893
245851
256519
259552
175995
267991

REC
NUM

1
2
3
4
5
6
7

PART
NUM

AX-612
J-912

123-LM
Y-771
U-734
EA-74
EN-12

Test Transaction File

CURRENT
BALANCE

400.00
850.00

2,900.00

CREDIT
LIMIT

1,000.00
5,000.00
3,000.00

CUSTOMER
ADDRESS

1520 S. Maple, City
18 Etwine St., City
1 Shady Side, City

CUSTOMER
NAME

Smith, Joe
Lang, Tony
Swindle, Joe

CUST
NUM

231893
256519
267991

Original Test AR Master File

CURRENT
BALANCE

420.00
860.00

2,900.00

CREDIT
LIMIT

1,000.00
5,000.00
3,000.00

CUSTOMER
ADDRESS

1520 S. Maple, City
18 Etwine St., City
1 Shady Side, City

CUSTOMER
NAME

Smith, Joe
Lang, Tony
Swindle, Joe

CUST
NUM

231893
256519
267991

Updated Test AR Master File

Error Report

TOTAL
PRICE

EXPLANATION
OF ERROR

45.00

400.00

120.00

3.00

1,220.00

CUSTOMER NAME does not
correspond to CUST # 231893

Check digit error in
CUST # field

Price extension error

Record out of sequence

Credit limit error

UNIT
PRICE

15.00

20.00

25.00

3.00

1,220.00

QNTY

3

20

5

1

1

DESCRIPTION

Gear

Hose

Bushing

Seal

Rebuilt Engine

CUSTOMER
NAME

Azar, Atul

Jones, Mary

Tuner, Agnes

Hanz, James

Swindle, Joe

CUST
NUM

231893

245851

259552

175995

267991

REC
NUM

2

3

5

6

7

PART
NUM

J-912

123-LM

U-734

EA-74

EN-12

X

X

X

X

XX

at implementation. If the application has been modified, the auditor can create additional
test data that focus on the areas of the program changes.

Base Case System Evaluation
Base case system evaluation (BCSE) is a variant of the test data approach. BCSE tests
are conducted with a set of test transactions containing all possible transaction types.
These are processed through repeated iterations during systems development testing until

 consistent and valid results are obtained. These results are the base case. When subse-
quent changes to the application occur during maintenance, their effects are evaluated by
comparing current results with base case results.

Tracing
Another type of the test data technique called tracing performs an electronic walk-through
of the application’s internal logic. The tracing procedure involves three steps:

1. The application under review must undergo a special compilation to activate the trace
option.

2. Specific transactions or types of transactions are created as test data.

3. The test data transactions are traced through all processing stages of the program,
and a listing is produced of all programmed instructions that were executed during
the test.

Figure 17-13 illustrates the tracing process using a portion of the logic for a pay-
roll application. The example shows records from two payroll files—a transaction record
showing hours worked and two records from a master file showing pay rates. The trace
listing at the bottom of Figure 17-13 identifies the program statements that were exe-
cuted and the order of execution. Analysis of trace options indicates that Commands
0001 through 0020 were executed. At that point, the application transferred to Com-
mand 0060. This occurred because the employee number (the key) of the transaction
record did not match the key of the first record in the master file. Then Commands 0010
through 0050 were executed.

Part V Computer Controls and Auditing 821

Employee
Number

33276
33456

Hourly
Rate

15
15

YTD
Earnings

12,050
13,100

Dependents

3
2

YTD
Withhold

3,200
3,600

YTD
FICA

873.62
949.75

Payroll Master File

Trace Listing
0001, 0010, 0020, 0060, 0010, 0020, 0030, 0040, 0050

Computer Program Logic
0001
0010
0020
0030
0040
0050
0060

Read Record from Transaction File
Read Record from Master File
If Employee Number (T) = Employee Number (M)

Wage = (Reg Hrs + [OT Hrs x 1.5]) x Hourly Rate
 Add Wage to YTD Earnings
 Go to 0001
Else Go to 0010

Payroll Transaction File

Time
Card #

8945

Employee
Number

33456

Name

Jones, J.J.

Year

2007

Pay
Period

14

Reg
Hrs

40.0

OT
Hrs

3.0

FIGURE 17-13 Tracing

822 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

Advantages of Test Data Techniques
Test data techniques have three primary advantages. First, they employ through-the- computer
testing, thus providing the auditor with explicit evidence concerning application func-
tions. Second, if properly planned, test data runs can be employed with only minimal
disruption to the organization’s operations. Third, they require only minimal computer
expertise on the part of auditors.

Disadvantages of Test Data Techniques
The primary disadvantage of test data techniques is that auditors rely on the client’s IT
personnel to obtain a copy of the production application under test. The audit risk here is
that the IT personnel may intentionally or accidentally provide the auditor with the wrong
version of the application. Audit evidence collected independently is more reliable than
evidence the client supplies. A second disadvantage is that these techniques produce a
static picture of application integrity at a single point in time. They do not provide a con-
venient means for gathering evidence of ongoing application functionality. High cost of
implementation is a third disadvantage of test data techniques. The auditor must devote
considerable time to understanding program logic and creating test data. The following
section shows how automating testing techniques can resolve these problems.

The Integrated Test Facility
The integrated test facility (ITF) approach is an automated technique that enables the
auditor to test an application’s logic and controls during its normal operation. The ITF
involves one or more audit modules designed into the application during the systems
development process. In addition, ITF databases contain dummy or test master file records
integrated among legitimate records. Some firms create a dummy company to which test
transactions are posted. During normal operations, test transactions are merged into the
input stream of regular (production) transactions and are processed against the files of
the dummy company. Figure 17-14 illustrates the ITF concept.

Expected
Results

Production
Reports

Auditor enters test transactions
along with production transactions
and calculates expected results.

After testing, the auditor compares
ITF results with expected results.

ITF
Master Files

Production
Master Files

Production
Application with
Embedded
ITF Modules

ITF
Transactions

Production
Transactions

ITF Test Results

FIGURE 17-14 The ITF Technique

Part V Computer Controls and Auditing 823

ITF audit modules are designed to discriminate between ITF transactions and produc-
tion data. This may be accomplished in a number of ways. One of the simplest and most
commonly used is to assign a unique range of key values exclusively to ITF transactions.
For example, in a sales order processing system, account numbers between 2000 and 2100
are reserved for ITF transactions and will not be assigned to actual customer accounts. By
segregating ITF transactions from legitimate transactions in this way, ITF test data does not
corrupt routine reports that the application produces. Test results are produced separately
in digital or hard-copy form and distributed directly to the auditor. Just as with the test
data techniques, the auditor analyzes ITF results against expected results.

Advantages of ITF
The ITF technique has two advantages over test data techniques. First, ITF supports
ongoing monitoring of controls as COSO recommends. Second, ITF-enhanced applica-
tions can be economically tested without disrupting the user’s operations and without
the intervention of computer services personnel. Thus, ITF improves the efficiency of the
audit and increases the reliability of the audit evidence gathered.

Disadvantages of ITF
The primary disadvantage of ITF is the potential for corrupting data files with test data that
may end up in the financial reporting process. Steps must be taken to ensure that ITF test
transactions do not materially affect financial statements by being improperly aggregated
with legitimate transactions. This problem can be remedied in two ways: (1) adjusting
entries may be processed to remove the effects of ITF from general ledger account balances
or (2) data files can be scanned by special software that remove the ITF transactions.

Parallel Simulation
Parallel simulation involves creating a program that simulates key features or processes of the
application under review. The simulated application is then used to reprocess transactions
that the production application previously processed. This technique is illustrated in Figure
17-15. The results obtained from the simulation are reconciled with the results of the original
production run to determine if application processes and controls are functioning correctly.

Creating a Simulation Program
Simulation packages are commercially available and are sometimes a feature of general-
ized audit software (GAS).2 The steps involved in performing parallel simulation testing
are outlined in the following section.

1. The auditor must first gain a thorough understanding of the application under review.
Complete and current documentation of the application is required to construct an
accurate simulation.

2. The auditor must then identify those processes and controls in the application that
are critical to the audit. These are the processes to be simulated.

3. The auditor creates the simulation using a fourth-generation language or generalized
audit software.

2 Although GAS can be used for testing internal controls, it is primarily a substantive testing technique.
For this reason, this technology is discussed in the section that deals with substantive testing.

824 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

4. The auditor runs the simulation program using selected production transactions and
master files to produce a set of results.

5. Finally, the auditor evaluates and reconciles the test results with the production
results produced in a previous run.

Simulation programs are usually less complex than the production applications they
represent. Because simulations contain only the application processes, calculations, and
controls relevant to specific audit objectives, the auditor must carefully evaluate differ-
ences between test results and production results. Differences in output results occur for
two reasons: (1) the inherent crudeness of the simulation program and (2) real deficiencies
in the application’s processes or controls, which the simulation program makes apparent.

Substantive Testing Techniques
Substantive tests are so named because they are used to substantiate dollar amounts in
account balances. Substantive tests include but are not limited to the following:

1. Determining the correct value of inventory.

2. Determining the accuracy of prepayments and accruals.

Application
Specifications

Simulation
Output

Production
Output

Production
Transactions

Production
Transaction File

Production
Master Files

Actual
Production
Application

Simulation
Program

Generalized
Audit
Software
(GAS)

Auditor uses GAS to
produce simulation of
application under review.

Auditor reconciles simulation
output with production output.

FIGURE 17-15 Parallel Simulation Technique

Part V Computer Controls and Auditing 825

3. Confirming accounts receivable with customers.

4. Searching for unrecorded liabilities.

Before substantive tests can be performed, these data must first be extracted from
their host media and presented to the auditor in usable form. The two CAATTs examined
in this section assist the auditor in selecting, accessing, and organizing data used for per-
forming substantive tests.

The Embedded Audit Module
Embedded audit module (EAM) techniques use one or more programmed modules embed-
ded in a host application to select, for subsequent analysis, transactions that meet prede-
termined conditions. This approach is illustrated in Figure 17-16.

As the host application processes the selected transaction, a copy of it is stored on
an audit file for subsequent review. The EAM approach allows material transactions to
be captured throughout the audit period. The auditor retrieves captured transactions at
period-end or at any time during the period, thus significantly reducing the amount of
work the auditor must do to identify significant transactions for substantive testing.

To begin data capturing, the auditor specifies to the EAM the parameters and material-
ity threshold of the transactions set to be captured. For example, assume that the auditor
establishes a $50,000 materiality threshold for transactions that a sales order processing
system has processed. Transactions equal to or greater than $50,000 will be copied to the
audit file. From this set of transactions, the auditor will select a subset to be used for sub-
stantive tests. The EAM will ignore transactions that fall below this threshold.

Production
Output

Production
Transactions

Production
Master Files

Production
Application

Transactions
List

Audit File

EAM

Auditor sets materiality
threshold for capturing
transactions.

Auditor reviews audit file and
prepares a list of material
transactions for use in
substantive tests.

Production output
goes to users.

FIGURE 17-16 Embedded Audit Module Technique

826 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

Though primarily a substantive testing technique, EAMs may also be used to moni-
tor application controls on an ongoing basis as recommended in the COSO framework.
For example, transactions the EAM selects can be reviewed for proper authorization,
completeness and accuracy of processing, and correct posting to accounts.

Disadvantages of EAMs
The EAM approach has two significant disadvantages. The first pertains to operational
efficiency and the second to EAM integrity.

Operational Efficiency. From the user’s point of view, EAMs decrease operational
performance. The presence of an audit module within the host application may create
significant overhead, particularly when the level of testing is high. One approach for
relieving this burden from the system is to design modules that the auditor may turn
on and off. Doing so will, of course, reduce the effectiveness of the EAM as an ongoing
audit tool.

Verifying EAM Integrity. The EAM approach may not be a viable audit technique in
environments with a high level of program maintenance. When host applications are
undergoing frequent changes, the EAMs embedded within the hosts will also require
 frequent modifications. The integrity concerns raised earlier regarding application main-
tenance apply equally to EAMs. The integrity of EAM directly affects the quality of the
audit process. Auditors must therefore evaluate the EAM integrity. This would be accom-
plished in the same way as testing the host application controls.

Generalized Audit Software (GAS)
GAS is the most widely used CAATT for IS auditing. GAS allows auditors to access
electronically coded data files and perform various operations on their contents. ACL
and IDEA are currently the leading products, but others exist with similar features. The
 following audit tasks can be performed using GAS:

1. Footing and balancing entire files or selected data items.

2. Selecting and reporting detailed data contained on files.

3. Selecting stratified statistical samples from data files.

4. Formatting results of tests into reports.

5. Printing confirmations in either standardized or special wording.

6. Screening data and selectively including or excluding items.

7. Comparing two files and identifying any differences.

8. Recalculating data fields.

The widespread popularity of GAS is due to four factors: (1) GAS languages are easy to
use and require little IT background on the part of the auditor, (2) GAS may be used on any
type of computer because it is hardware independent, (3) auditors can perform their tests on
data independent of client IT professional, and (4) GAS can be used to audit the data files
of many different applications (in contrast with EAMs, which are application specific).

Using GAS to Access Simple Structures
Accessing flat-file structures (such as a text file) is a simple process, as illustrated
in Figure 17-17. In this example, an inventory file is read directly into the GAS,

Part V Computer Controls and Auditing 827

which extracts key information needed for the audit, including the quantity on hand, the
dollar value, and the warehouse location of each inventory item. The auditor’s task is to
perform a physical count of a representative sample of the inventory on hand to verify the
existence and value of the inventory. Thus, on the basis of a materiality threshold that the
auditor provides, the GAS selects the sample records and prepares a report with the key
information.

Using GAS to Access Complex Structures
Gaining access to complex structures, such as VSAM files and object-oriented database
files, poses more of a problem for the auditor. Most DBMSs, however, have utility fea-
tures that will reformat complex structures into flat files. In such cases, rather than access-
ing the complex structure directly, an intermediate flat file is produced, which the GAS
then accesses. Figure 17-18 shows this technique.

To illustrate the file-flattening process, consider the complex database structure pre-
sented in Figure 17-19. The database structure uses pointers to integrate three related
files—Customer, Sales Invoice, and Line Item—in a hierarchical model. It would be diffi-
cult, if not impossible, to extract audit evidence from a structure of this complexity using
GAS. A simpler flat-file version of this structure is illustrated in Figure 17-20. The result-
ing single text represents the three record types as a sequential structure with variable
length records that GAS can easily access.

Audit Issue Pertaining to the Creation of Flat Files
When auditors rely on client IT personnel to produce a flat file from their database, they
run the risk that database integrity will be compromised. For example, if the auditor
is confirming accounts receivable, certain fraudulent accounts in the original database
may be intentionally omitted from the flat file provided to the auditor. Auditors skilled
in relational and object database technology can avoid this problem. Not surprisingly,
public accounting firms are aggressively seeking employees with strong computer skills to
accompany their accounting training.

Production
Inventory File

Transactions
List

GAS

GAS extracts data selected
by auditor and produces a list
of inventory items to be
counted as part of
substantive testing.

Auditor determines selection
criteria (materiality threshold)
and key fields to be
retrieved by GAS.

Simple File Structure
(Flat File)

FIGURE 17-17 Using GAS to Access Simple File Structure

828 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

Transactions
List

GAS

Flat File

Database

DBMS
Utility
Program

Auditor specifies which
database records to
copy into flat file.

1

Database management system
produces a flat file of a portion
of the database.

2

Auditor determines the
selection criteria used
by the GAS.

3

GAS retrieves selected
records from the flat file.

4

Complex File Structure

FIGURE 17-18 Using GAS to Access Complex File Structure

Previous Record

Cust
Num

1875

Name

J. Smith

Address

18 Elm St.

Pointers

Next Record1820

Current
Balance

Next Invoice for Customer Num 1875 Last Invoice for Customer Num 1875

Invoice
Num

1921

$ Amount

800

Ship
Date

12/10/07

Pointers

Item
Num

83581

Qnty

10

Extended
Price

450.00

Unit
Price

45.00

Pointer

Line Item Record for Another Invoice

Item
Num

1325

Qnty

1

Extended
Price

350.00

Unit
Price

350.00

Pointer

Last
Record

To Head Record in
Cash Receipts List

To Head Record in Sales Invoice List

Pointer to Next Record Pointer to Next Record Pointer to Next Record

Pointer to Next Record

Customer
File

Sales Invoice
File

Line Item
File

FIGURE 17-19 Complex Database Structure

Part V Computer Controls and Auditing 829

1875 J. Smith 18 Elm St. 1820

83561 10 45.00 450.00

Next Invoice for Customer Num 1875

Line Item for Invoice

Last Line Item

Last Invoice for Customer Num 1875

Last Line Item

1326 1 350.00 350.00

Next Customer Record

Sales Invoice for Next Customer

Line Item

Line Item

Last Line Item

Line Item

Last Customer Record

Sales Invoice for Last Customer

Sales Data
for Customer
Num 1875

Flat File Structure

1921 800 12/10/07

FIGURE 17-20 Flat Version of a Complex File Structure

Summary
SOX legislation requires management to design, implement, and certify controls over financial reporting.
Similarly, external auditors are required to attest to management’s assessment of controls. This chapter
dealt with the business risks, IT controls, and test of controls pertaining to three areas of specific concern
to SOX: systems development, program change procedures, and computer applications.

The integrity of financial data is directly dependent on the accuracy of the applications that process
them. Likewise, the integrity of those applications depends on the quality of the systems development pro-
cess that produced them and on the program change procedures through which they were modified. Lack
of control over these areas, or inconsistency in their function, can result in unintentional application errors
and program fraud.

The systems development and maintenance controls and the test of controls described in this chapter
apply both to management’s SOX-compliance objectives and the auditor’s attest responsibility. To test
specific application controls, auditors (internal and external) use several CAATT techniques, including
the test data method, the integrated test facility, and parallel simulation. This chapter concluded with a
discussion of two popular CAATTs (embedded audit module and generalized audit software) used for
substantive testing.

K e y T e r m s

access tests (816)
accuracy tests (816)
audit objectives (799)
audit procedures (815)
audit risk (822)
audit trail controls (811)
audit trail tests (816)
authenticity tests (816)
base case system evaluation (BCSE) (820)
batch controls (809)
check digit (807)
completeness (806)
completeness tests (816)
computer-assisted audit tools and techniques
 (CAATTs) (818)
embedded audit module (EAM) (825)
existence or occurrence (815)
generalized audit software (GAS) (823)
hash total (811)

integrated test facility (ITF) (822)
management assertion (815)
operating system (802)
parallel simulation (823)
presentation and disclosure (815)
redundancy tests (816)
rights and obligations (815)
rounding error tests (816)
run-to-run control (810)
salami fraud (816)
spooling (813)
substantive tests (824)
test data method (819)
tests of controls (804)
tracing (821)
transcription errors (807)
transposition errors (807)
valuation or allocation (815)

830 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

Part V Computer Controls and Auditing 831

D i s c u s s i o n Q u e s t i o n s

 1. List the six systems development controls the
chapter addresses. List the two systems main-
tenance controls.

 2. Explain how program testing is conducted and
the importance of test data.

 3. List the control features that directly con-
tribute to the security of the computer center
environment.

 4. What is the purpose of a valid vendor file?
 5. What are the broad classes of input controls?
 6. Give one example of an error that a check digit

control detects.
 7. What are the primary objectives of a batch

control?
 8. What are the categories of processing

controls?
 9. If all of the inputs have been validated before

processing, then what purpose do run-to-run
controls serve?

10. What is the objective of a transaction log?

11. How can spooling present an added exposure?
12. What tests may be conducted for identifying

unauthorized program changes?
13. What tests may be conducted for identifying

application errors?
14. What does auditing around the computer

mean versus auditing through the computer?
Why is this so important?

15. What are some white box tests?
16. What is an embedded audit module?
17. Explain what GAS is and why it is so popular

with larger public accounting firms. Discuss
the independence issue related to GAS.

18. What is the purpose of a limit check?
19. What is the purpose of a range check?
20. What is a reasonableness test?
21. What is a validity check?
22. What is a run-to-run control?
23. What information would a batch control

record contain?

R e v i e w Q u e s t i o n s

 1. Discuss how a controlled SPL environment
can help to deter unauthorized changes to pro-
grams. Can the use of maintenance commands
mitigate these controls?

 2. What types of output would be considered
extremely sensitive in a university setting? Give
three examples and explain why the informa-
tion would be considered sensitive. Discuss
who should and should not have access to
each type of information.

 3. What are the classes of transcription errors?
 4. What is the purpose of a check digit?
 5. Does a hash total need to be based on a finan-

cial data field? Explain.
 6. Discuss the three common methods of han-

dling errors in transaction files.

 7. Why is computer waste disposal a potential
internal control issue?

 8. Why would a systems programmer create a
back door if he or she has access to the pro-
gram in his or her day-to-day tasks?

 9. The systems development life cycle is a meth-
odology. Why are auditors responsible for
evaluating the controls in this process?

10. What factors do you think might cause an
auditing team to spend more time than aver-
age on tests to identify application errors? For
unauthorized program changes?

11. Explain how an embedded audit module
works.

832 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

12. Compare and contrast the following tech-
niques based on costs and benefits:

 • test data method
 • base case system evaluation
 • tracing

 • integrated test facility
 • parallel simulation
13. What is the control issue related to reentering

corrected error records into a batch processing
system? What are the two methods for doing this?

 1. Computer applications use routines for check-
ing the validity and accuracy of transaction
data called

 a. operating systems.
 b. edit programs.
 c. compiler programs.
 d. integrated test facilities.
 e. compatibility tests.
 2. How does a direct access file processing sys-

tem edit individual transactions?
 a. takes place in a separate computer run
 b. takes place in online mode as transactions

are entered
 c. takes place during a backup procedure
 d. is not performed due to time constraints
 e. is not necessary
 3. Which of the following is an example of an

input control?
 a. making sure that output is distributed to

the proper people
 b. monitoring the work of programmers
 c. collecting accurate statistics of historical

transactions while gathering data
 d. recalculating an amount to ensure its

accuracy
 e. having another person review the design of

a business form
 4. A control designed to validate a transaction at

the point of data entry is
 a. recalculation of a batch total.
 b. a record count.
 c. a check digit.
 d. checkpoints.
 e. recalculation of hash total.

 5. In a computer system, how are accounting
records posted?

 a. master file is updated to a transaction file
 b. master file is updated to an index file
 c. transaction file is updated to a master file
 d. master file is updated to a year-to-date file
 e. current balance file is updated to an index file
 6. The controls in a computerized system are

classified as
 a. input, processing, and output.
 b. input, processing, output, and storage.
 c. input, processing, output, and control.
 d. input, processing, output, storage, and

control.
 e. collecting, sorting, summarizing, and

reporting.
 7. An employee in the receiving department

keyed in a shipment from a remote terminal
and inadvertently omitted the purchase order
number. The best systems control to detect
this error would be a

 a. batch total.
 b. completeness test.
 c. sequence check.
 d. reasonableness test.
 e. compatibility test.
 8. In an automated payroll processing environ-

ment, a department manager substituted the
time card for a terminated employee with a
time card for a fictitious employee. The ficti-
tious employee had the same pay rate and hours
worked as the terminated employee. The best
control technique to detect this action using
employee identification numbers would be a

M u l t i p l e - C h o i c e Q u e s t i o n s

Part V Computer Controls and Auditing 833

 a. batch total.
 b. record count.
 c. hash total.
 d. subsequent check.
 e. financial total.
 9. SOX legislation calls for sound internal con-

trol practices over financial reporting and
requires SEC-registered corporations to main-
tain systems of internal control that meet SOX
standards. An integral part of internal control
is the appropriate use of preventive controls.
Which of the following is not an essential ele-
ment of preventive control?

 a. separation of responsibilities for the record-
ing, custodial, and authorization functions

 b. sound personnel practices
 c. documentation of policies and procedures
 d. implementation of state-of-the-art software

and hardware
 e. physical protection of assets

10. Which of the following is NOT a test for iden-
tifying application errors?

 a. reconciling the source code
 b. reviewing test results
 c. retesting the program
 d. testing the authority table
11. Which of the following is NOT a common

type of white box test of controls?
 a. completeness tests
 b. redundancy tests
 c. inference tests
 d. authenticity tests
12. An electronic walk-through of the applica-

tion’s internal logic is called
 a. a salami logic test.
 b. an integrated test.
 c. tracing.
 d. a logic bomb test.

 1. Input Validation
Describe the types of application control used
for the following data in a payroll system.

 a. Employee name
 b. Employee number
 c. Social Security number
 d. Rate per hour or salary
 e. Marital status
 f. Number of dependents
 g. Cost center
 h. Regular hours worked
 i. Overtime hours worked
 j. Total employees this payroll period

 2. Computer Fraud and Controls
Although the threat to security via external
penetration is often seen as the greatest threat,
many threats are internal. Computer frauds
include (1) input manipulation, (2) program
alteration, (3) file alteration, (4) data theft,
and (5) sabotage.

P r o b l e m s

Required:
Explain how each of these five types of fraud
is committed. Also, identify a method of pro-
tection against each without using the same
protection method for more than one type of
fraud. Use the following format.

Type of
 Fraud Explanation

Description of
Protection Methods

 a.

 b.

 c.

 d.

 e.

 3. Processing Controls
A well-designed system can prevent both
intentional and unintentional alteration and
destruction of data. These data controls can

834 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

be classified as (1) input controls, (2) processing
controls, and (3) output controls

Required:
For each of the three control categories listed,
provide two specific controls and explain how
each control contributes to ensuring the reli-
ability of data. Use the following format.
 Control Specific Contribution to

Category Controls Data Reliability

 4. Input Controls and Data Processing
A catalog company has hired you to com-
puterize its sales order entry forms. Approxi-
mately 60 percent of all orders are received
over the telephone, with the remainder
received by either mail or fax. The company
wants the phone orders to be input as they
are received. The mail and fax orders can be
batched together in groups of 50 and submit-
ted for keypunching as they become ready.
The following information is collected for
each order:

 • Customer number (if customer does not
have one, one needs to be assigned)

 • Customer name
 • Address
 • Payment method (credit card or money

order)
 • Credit card number and expiration date (if

necessary)
 • Items ordered and quantity

 • Unit price

Required:
Determine control techniques to make sure
that all orders are entered accurately into the
system. Also, discuss any differences in con-
trol measures between the batch and the real-
time processing.

 5. Audit Plan
Rainbow Paint Company, a medium-sized
manufacturing firm, has no internal auditing
department. It recently hired a new account-
ing firm to perform the external audit.

Required:
Outline an audit plan to examine operating
system control, program maintenance con-
trols, and organizational system controls.
Include in your plan the audit objectives,
exposures, necessary controls, and test of
controls. Also include any documentation the
auditors should request.

 6. Audit Plan
The auditors for Golden Gate Company
have a gut feeling that liabilities may be
unrecorded. Their initial suspicions stem
from a radical decline in accrued liabilities
from last year. Golden Gate’s records are all
computerized.

Required:
Devise a plan to search the data files to per-
form a substantive test for identifying unre-
corded liabilities.

 7. Risk Identification and Plan
of Action
Two years ago, an external auditing firm
supervised the programming of embedded
audit modules for Previts Office Equipment
Company. During the audit process this
year, the external auditors requested that a
transaction log of all transactions be cop-
ied to the audit file. The external auditors
noticed large gaps in dates and times for
transactions being copied to the audit file.
When they inquired about this, they were
informed that increased processing of trans-
actions had been burdening the mainframe
system and that operators frequently had to
turn off the EAM to allow the processing
of important transactions in a timely fash-
ion. In addition, much maintenance had
been performed during the past year on the
application programs.

Required:
Outline any potential exposures and deter-
mine the courses of action the external audi-
tors should use to proceed.

Part V Computer Controls and Auditing 835

 8. Risk Identification and Plan
of Action
The internal auditors of Brown Electrical
Company report to the controller. Due to
changes made in the past year to several of
the transaction processing programs, the
internal auditors created a new test data set.
The external auditors requested that the old
data set also be run. The internal auditors
embarrassingly explained that they overwrote
the original test data set.

Required:
Outline any potential exposures and deter-
mine the courses of action the external audi-
tor should take.

 9. Risk Identification and Plan
of Action
As the manager of the external audit team,
you realize that the embedded audit module
only writes material invoices to the audit file
for the accounts receivable confirmation pro-
cess. You are immediately concerned that the
accounts receivable account may be substan-
tially overstated this year and for the prior
years in which this EAM was used.

Required:
Explain why you are concerned because all
“material” invoices are candidates for con-
firmation by the customer. Outline a plan
for determining if the accounts receivable are
overstated.

10. Audit Objectives and Procedures
You are conducting substantive tests on the
accounts receivable file to verify its accuracy.
The file is large, and you decide to test only
a sample of the records. Because of the com-
plexity of the database structure, you cannot
access the database directly. The client’s sys-
tems programmer uses a utility program to
write a query that produces a flat file, which
he provides for testing purposes.

Required:
Discuss any concerns you would have as an
auditor and any actions you would take.

11. Systems Development and Program
Changes
Avatar Financials, Inc., located on Madi-
son Avenue in New York, is a company that
provides financial advice to individuals and
small to mid-sized businesses. Its primary
operations are in wealth management and
financial advice. Each client has an account
where basic personal information is stored at
a server within the main office in New York
City. The company also keeps the informa-
tion about the amount of investment of each
client on a separate server at their data center
in Bethlehem, Pennsylvania. This information
includes the total value of the portfolio, type
of investments made, the income structure of
each client, and associated tax liabilities.

Avatar decided to purchase software for
asset management from specialized vendors.
This software allows them to run analytics
on the portfolios and run detailed simulations
of market trends and is called Siman (SIMu-
lation ANalaytics). V-Dot Solutions, another
contractual company that is customizing
and installing Siman, has sent a team of six
systems analysts to carry out this task. They
anticipate additional hardware installations
to run the simulation analytics on Siman.

V-Dot’s setup requires them to train two
people from Avatar who will be responsible
for minor issues and basic maintenance of
the system. Special consultants from V-Dot
will deal with major problems and issues. It
takes four weeks to completely have the sys-
tem operational and integrated into Avatar’s
existing computer system. The testing phase
of the project has been readjusted to allow
the two employees of Avatar to run these tests
and ensure compatibility.

A year after the installation of the simu-
lation software Siman, Avatar finds it very
useful. To upgrade the systems to the next
level, they decide to go to another data source
company for a raw market data feed that will
be used to run the simulations. However, this
requires changes to the source code of Siman.
Fortunately, within its analytics department
that uses Siman, Avatar has two programmers

who are well versed in the programming lan-
guage that Siman was written in. These pro-
grammers are able to implement the changes
that will allow Siman-II to use the new data
feed.

To remain competitive, Avatar has
placed the programmers under a tight time
constraint. To expedite the process, the doc-
umentation process is shortened with the
intention that it will be looked into once the
systems are running. The programmers also
will be deployed back to the maintenance
operations once the project is complete. The
contract with Siman’s original vendor, V-
Dot, has expired and the company does not
want to extend their maintenance services
for another year. Instead it feels that these
two programmers will be able to perform the
same tasks for less money.

Required:
a. Discuss the major internal control issues in

Avatar’s systems development approach.
b. Comment on the duties the two program-

mers of Avatar perform. Are systems
maintenance and program development
extensions of the same responsibility?

c. Identify potential issues that might arise
due to weak internal controls.

12. Computer-Assisted Audit Tools
and Techniques (CAATTs)

Required:
a. Explain the advantages of using GAS to

assist with audits and give several exam-
ples of how it may be used.

b. Describe the audit purpose facilitated and
the procedural steps to be followed when
using the following CAATTs.
1. ITF
2. EAM
3. parallel simulation

13. Audit of Systems Development
The Balcar Company’s auditors are develop-
ing an audit plan to review the company’s

systems development procedures. Their audit
objectives are to ensure that

1. the system was judged necessary and justi-
fied at various checkpoints throughout the
SDLC.

2. systems development activities are applied
consistently and in accordance with man-
agement’s policies to all systems develop-
ment projects.

3. the system as originally implemented was
free from material errors and fraud.

4. system documentation is sufficiently accu-
rate and complete to facilitate audit and
maintenance activities.

The following six controllable activities have
been identified as sources of audit evidence
for meeting these objectives: systems autho-
rization; user specification; technical design;
internal audit participation; program testing;
and user testing and acceptance.

Required:
a. Explain the importance of each of the six

activities in promoting effective control.
b. Outline the tests of controls that the

auditor would perform in meeting audit
objectives.

14. Payroll Application Control
Using this supplemental information, analyze
the flowchart on the following page.

• The personnel department determines the
wage rate of all employees. To start the
process, personnel sends the payroll coor-
dinator, George Jones, an authorization
form in order to add an employee to the
payroll. After Jones enters this informa-
tion into the system, the computer auto-
matically determines the overtime and
shift differential rates for the individual,
updating the payroll master files.

• Employees use a time clock to record
the hours worked. Every Monday morn-
ing, George Jones collects the previous
week’s time cards and begins the comput-
erized processing of payroll information to

836 Chapter 17 IT Controls Part III: Systems Development, Program Changes, and Application Controls

Part V Computer Controls and Auditing 837

 produce paychecks the following Friday.
Jones then reviews the time cards to
ensure that the hours worked are cor-
rectly totaled; the system determines
overtime and/or any shift differential.

• Jones performs all other processes dis-
played on the flowchart. The system
automatically assigns a sequential num-
ber to each payroll check produced. The
check stocks are stored in a box next to
the computer printer to provide immedi-
ate access. After the checks are printed,
an automatic check-signing machine
signs them with an authorized signature
plate that Jones keeps locked in a safe.

• After the check processing is completed,
Jones distributes the checks to the em-
ployees, leaving the checks for the sec-
ond- and third-shift employees with the
appropriate shift supervisor. Jones then
notifies the data processing department
that he is finished with his weekly pro-
cessing, and data processing makes a
backup of the payroll master for storage
in the computer room.

Required:
Identify and describe:
a. Areas in the payroll processing sys-

tem where the internal controls are
inadequate.

b. Two areas in the payroll system where
the system controls are satisfactory.

Problem 14:
Payroll Application Control

Database
Backup

Review
Time Cards

for
Accuracy

Prepare Employee
Payroll

Employees'
Time Cards

Review Weekly
Payroll Register

on Monitor

No

Yes

Payroll
Register

Prepare Journal
Entry

Distribute
to

Employees

Paychecks

Employee
Punches

Time
Clock

Does Payroll
Register Match
Time Cards?

Payroll
Master File

Calculate Overtime
and Shift

Differential Rates

Authorization
Form

Post Payroll
Information

Process Payroll
Checks

General
Ledger

Authorization
Form

Personnel
Prepares
Original

Payroll Information

F

F

